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Abstract

This paper deals with the derivation of the macroscopic momentum transport equation in a non-homogeneous so-

lidifying columnar dendritic mushy zone using the method of volume averaging. One of the originalities of this study lies

in the derivation of an associated closure problem for the determination of the spatial evolution of the effective transport

properties in such a complex situation. In this analysis – where the phase change has been included at the different stages

of the derivation – all the terms arising from the averaging procedure (geometrical moments, phase interactions, in-

terfacial momentum transport due to phase change, porosity gradients, etc.) are systematically estimated and compared

on the basis of the characteristic length-scale constraints associated with the porous structures presenting evolving

heterogeneities. For dendritic structures with ‘‘moderate’’ (but not small) evolving heterogeneities, we show that phase

change and non local effects could hardly affect the determination of the permeability and inertia tensors. Finally, a

closed form of the macroscopic momentum equation is proposed and a discussion is presented about the need to

consider inertia terms and the second Brinkman correction (explicitly involving gradients of the liquid volume fraction)

in such non-homogeneous systems. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fluid mechanics in a multi-component mixture dur-

ing solidification is a very complex problem due to the

development of a two-phase columnar mushy zone. This

mushy zone is composed of solid dendrites and inter-

dendritic liquid (Fig. 1) and its evolution depends on

several conditions such as temperature gradient, initial

concentration of the melt, cooling rate, etc. It is now

recognized as essential to give the most possible accurate

description of transport phenomena in the mushy zone

since the interdendritic liquid flow, mainly induced by

thermosolutal natural convection [1], strongly influences

heat and mass transfer, and plays a key role on the

micro- and macro-segregation [2]. Under these circum-

stances, the solidification rate, the microstructure and

the quality of the product (homogeneity, reliability, as-

pect, etc.) can be drastically affected.

In most solidification models, the mushy zone is de-

scribed as a porous medium (or equivalent continuum)

and the momentum equation has been derived using

different methods reviewed in detail by [3]. Two distinct

approaches have been used to represent the coupling

between the mushy and bulk liquid regions. In the multi-

domain approach, the Navier–Stokes equation is written

in the fully melted region while the flow in the porous

mushy layer is governed by Darcy’s law or one of its

extensions, and appropriate boundary conditions are

written at the interface [4–6]. However, this two-domain

method is not suitable for predicting irregular interface

shapes and, furthermore, interfacial boundary condi-

tions still remain a controversial subject of intense re-

search activity [7]. For these reasons, multi-domain

models have been replaced by the more convenient one-

domain continuum model constituted of a single set of

equations describing the transport phenomena in the
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whole domain (melt, mush and solid regions). In this

approach, quasi-steady approximations, remeshing or

coordinate mapping are not necessary anymore, and the

conservation equations can be numerically solved using

a fixed grid.

Two kinds of continuum models have been used to

derive the conservation equations in the context of so-

lidification: the classical mixture theory [8–10] and the

volume averaging method [11–13]. The former treats the

solid and liquid phases as a solid–liquid mixture to

which macroscopic properties are assigned in a purely

phenomenological manner. Conservation equations for

each phase are added to provide a set of mixture con-

servation equations and interactions between phases are

described using semi-empirical relationships. One of the

first complete solidification models for multi-component

systems using the mixture theory has been developed by

Bennon and Incropera [9] and later reassessed by Pres-

cott et al. [10]. This mathematical model has been ex-

Nomenclature

Abe area of entrances and exits for the b-phase
contained within the averaging volume, m2

Abr b–r interface contained within the averaging

volume, m2

Av specific area, m�1

b vector used to represent ePPb when micro-

scopic inertial effects are negligible, m�1

B second-order tensor used to represent ewwbr

when microscopic inertial effects are negli-

gible

c vector used to represent the contribution of

microscopic inertial effects to ePPb, m
�1

C second-order tensor used to represent the

contribution of microscopic inertial effects

to ewwbr

F inertia tensor

g gravitational acceleration, m s�2

K permeability tensor, m2

‘i i ¼ 1; 2; 3, lattice vectors, m

‘b interdendritic length scale, m

L characteristic length for macroscopic quan-

tities, m

Lv characteristic length for hvbib; m

Le characteristic length for eb; m

m vector used to represent ePPb, m
�1

_mmb melting rate, kg m�3 s�1

_mmr solidification rate, kg m�3 s�1

M second-order tensor used to represent evvb

nbr unit normal vector directed from the b-
phase toward the r-phase

Pb pression in the b-phase, Pa

r position vector, m

r0 radius of the averaging volume, m

t time, sett time scale for evvb, s

t� time scale for hvbib, s
tbr unit tangent vector at the b–r interface

vb velocity of the b-phase, m s�1

V averaging volume, m3

Vb volume of the b-phase contained within the

averaging volume, m3

wbr velocity of the b–r interface, m s�1

wn averaged growth velocity, m s�1

x position of the centroid of the averaging

volume, m

y position vector relative to the centroid of the

averaging volume, m

Greek symbols

d 1� qr=qb, shrinkage parameter

cb indicator function for the b-phase
eb volume fraction of the b-phase
lb dynamic viscosity of the b-phase, Pa s

qb density of the b-phase, kg m�3

hwbi superficial volume average of w in the b-
phase

hwbi
b

intrinsic phase average of w in the b-phaseewwb spatial fluctuation of w in the b-phase

Subscripts

b liquid phase

r solid phase

Fig. 1. Macroscopic dendritic mushy zone and an associated

averaging volume.
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tended by some authors [14–16] and have been exten-

sively used in numerous configurations [17–21].

The volume averaging technique considers a repre-

sentative elementary volume in the domain under study,

and the local conservation equations are integrated over

this volume providing averaged macroscopic transport

equations valid in the whole domain [22,23]. Phase in-

teractions at the solid–liquid interface arise from the

averaging process and are represented by interfacial area

integrals. This technique has been used first in solidifi-

cation modeling by Beckermann and Viskanta [24] and

later extended and used by Ganesan and Poirier [11], Ni

and Beckermann [12], Beckermann and Viskanta [25]

and Schneider and Beckermann [26]. Due to the com-

plexity of the dendritic structures, phase interaction in-

tegral terms are not explicitly calculated in these models

and generally are also represented by semi-empirical

laws. Recently, a multiphase/multiscale theory has pro-

vided some progress in this issue, by describing finite

mass exchange in the solid and extradendritic liquid in

an averaging volume [27]. The method of volume aver-

aging is often preferred due to its ability to include mi-

croscopic information at the macroscopic scale thus

improving solidification modeling.

Regarding the momentum equation, Prescott et al.

[10] have shown that under the same physical assump-

tions, continuum and volume-averaged approaches give

rise to equivalent macroscopic equations to describe the

interdendritic flow. Indeed, in both cases, the macro-

scopic momentum conservation equation is represented

by a modified Navier–Stokes equation including Darcy’s

term sometimes completed with a Forchheimer correc-

tion term where porosity and the permeability are

generally related by the classical Kozeny–Carman rela-

tionship. Let us note that, in the absence of phase change,

the derivation of Darcy’s law for homogeneous systems

has also been obtained using the homogenization theory

[28,29].

All comparisons between numerical simulations and

experiments were found in qualitative agreement, but

important discrepancies still subsist between measured

and predicted fields [19,24,30,31]. These differences are

mainly attributed to the weakness of the model as-

sumptions, such as local thermal and mass equilibria,

uncertainty on physical properties and geometrical

characterization of the columnar dendritic mushy zone.

It is henceforth clear that one significant improvement in

solidification modeling lies in the introduction of mi-

croscopic information both in the macroscopic conser-

vation equations and in the representation of the

effective transport coefficients such as permeability, dif-

fusion–dispersion coefficient or effective conductivity.

Among the limitations of the previous derivations of

the macroscopic momentum equation used in solidifi-

cation modeling, we note that dispersive fluxes and in-

ertial effects are generally intuitively neglected and, as

previously emphasized, phase interaction terms are esti-

mated by constitutive laws. Furthermore, besides its

strong anisotropy, the dendritic columnar region is char-

acterized by non-uniformity of the macroscopic proper-

ties such as the liquid volume fraction which continuously

varies from zero in the solid to unity in the melt region.

Although these continuous variations or evolving hetero-

geneities [32] can obviously modify the convective flows

[33], they have been rarely explicitly included in the

theoretical models. Finally, one of the most important

limitation of interdendritic flow modelization comes

from the Kozeny–Carman relationship used to estimate

the permeability from the liquid volume fraction. Several

numerical and experimental attempts have been made to

provide a better representation of the permeability,

especially for liquid volume fractions greater than 0.7

[34–37] but more data are still necessary to provide a

general description.

In order to overcome the above limitations, this pa-

per addresses a new derivation of the macroscopic mo-

mentum equation in a solidifying columnar dendritic

mushy zone using the volume averaging method and

provides an associated closure problem for the charac-

terization of the spatial evolution of the transport

properties in such heterogeneous structures. The concept

of closure problem has been previously used in homo-

geneous [38–40] or heterogeneous [37] porous media but

always in the absence of phase change. In the context of

solidification, the analysis becomes much more complex

and a full solution taking into account all the phenom-

ena at the different scales is still out of reach. For this

reason, in order to quantitatively justify the necessary

simplifications and to propose a closed form of the

macroscopic momentum equation, all the micro- and

macro-contributions to momentum transport due to

phase change and geometry are estimated and compared

on the basis of the characteristic length-scale constraints

associated with the dendritic-like porous structures

presenting evolving heterogeneities.

2. The procedure of volume averaging

In order to derive the macroscopic momentum

equations for an incompressible flow of a binary mixture

during solidification, we consider a columnar mushy zone

and the local averaging volume V shown in Fig. 1, where

r0 is the radius of V and ‘b stands for the interdendritic

characteristic length. All physical properties of the

mixture are assumed to be constant and the Boussinesq

approximation applies. The boundary-value problem

describing the mass and momentum conservation within

the averaging volume is given by:

oqb

ot
þr � ðqbvbÞ ¼ 0 ð1Þ
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o

ot
ðqbvbÞ þ r � ðqbvbvbÞ ¼ �rPb þ lbr2vb þ qbg

in the b-phase
ð2Þ

qbnbr � ðvb � wbrÞ ¼ qrnbr � ðvr � wbrÞ at Abr; ð3Þ

vb ¼ f ðr; tÞ at Abe; ð4Þ

where the boundary condition (3) represents the mass

conservation equation at the solid–liquid interface Abr,

and Abe in (4) is the area of entrances and exits of the

liquid phase in the macroscopic region V (Fig. 1). At this

stage, this boundary condition is unknown and the

discussion about the function f ðr; tÞ will take place in

the section about the closure problem. It should be

emphasized here that the physical situation we want to

deal with can be much more complicated than the

problem considered in this section. In particular, mass

conservation of several species, and heat transfer could

be considered. However, the relaxation times associated

with these other mechanisms are in most situations

much larger than the relaxation time associated with the

viscous flow under consideration. Therefore, we will

neglect the possible coupling between the momentum

balance and these other transport mechanisms.

2.1. Geometrical considerations

In homogeneous structures, one usually consider that

the averaging method is applicable for systems in which

the different length scales are constrained by [22,23]:

‘b � r0 � L; ð5Þ

where L is the macroscopic length scale of the system.

For a columnar dendritic-like porous structure pre-

senting evolving heterogeneities the situation is much

more complex since the averaged macroscopic proper-

ties are space-dependent but also depend on the size of

the averaging volume V. Indeed, in a mushy zone, the

liquid volume fraction (porosity) continuously varies

from unity in the melt to zero in the solid region. In this

case, the analysis depends on three length-scale con-

straints which are functions of some geometrical pa-

rameter characteristic of the evolving heterogeneity.

This parameter describing the decreasing rate of the ge-

ometry, denoted s, will be defined as the average de-

crease of the thickness of the dendrite in the direction

parallel to the primary dendritic arm [32]. First, when

the evolving heterogeneities are small (typically

s < 0:5%), the macroscopic properties are quasi-con-

stant whatever the size r0 of the averaging volume V and

the scale separation is represented by the classical con-

straint

‘b � r0 � Le; ð6Þ

where Le is the characteristic length associated with the

macroscopic variations of porosity. For a ‘‘moderate’’

value of s (less than 4%), Le is not strongly greater than

r0 but the scales still remain distinct and the associated

length-scale constraint can be written

‘b < r0 < Le; ð7Þ

which also leads to

‘b � Le: ð8Þ

Under this condition, the averaging procedure can still

be used and we will see in the next section that Eq. (8) is

very useful for comparing of the order of magnitude of

the different terms during the averaging procedure. Fi-

nally, when evolving heterogeneities are important

(greater than 4%), scale separation is not respected and a

fixed averaging volume may not be adapted to provide

average properties. This situation still remains a chal-

lenge and an alternative theory could consist in the use

of deforming averaging volume [41].

According to the estimation by Goyeau [37] the de-

creasing rate of the geometry s for real dendritic struc-

tures observed experimentally during solidification of a

26 wt% solution of aqueous NH4Cl [42] and succino-

nitrile–4 wt% acetone [43] is less than 4%. Therefore, we

will consider in this work columnar dendritic structures

with ‘‘moderate’’ value of s where the scale separation is

described by Eqs. (7) and (8).

2.2. Averaged continuity equation

The definitions and theorems used in the following

development are summarized in Appendix A. Let us

consider the microscopic continuity equation of the solid

and liquid phases in the averaging volume V:

oqk

ot
þr � ðqkvkÞ ¼ 0; k ¼ b; r: ð9Þ

According to Prescott and Incropera [11] and Ganesan

and Poirier [12], we assume that, in the context of so-

lidification, the solid and liquid microscopic densities qr

and qb are uniform in V and that the solid and the liquid

density variations are only significant on the macro-

scopic scale. This assumption can be written:

qk ¼ ckhqki
k
; k ¼ b; r; ð10Þ

where ck is the k-phase indicator function, given by

definition (A.6). hqki
k
represents the intrinsic volume

average density of phase k defined by Eq. (A.9). Using

the averaging theorems provided in Appendix A, the

averaged macroscopic mass conservation equations for

the liquid and solid phases can be written as

o

ot
ðebqbÞ þ r � ðebqbhvbibÞ ¼ _mmb; ð11Þ
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o

ot
ðerqrÞ þ r � ðerqrhvrirÞ ¼ _mmr; ð12Þ

where _mmb and _mmr are, respectively, the melting and so-

lidification rates defined by:

_mmb ¼ � 1

V

Z
Abr

qbnbr � ðvb � wbrÞdA; ð13Þ

_mmr ¼ � 1

V

Z
Abr

qrnrb � ðvr � wbrÞdA; ð14Þ

where wbr is the velocity of the interface Abr and nbr is

the unit normal vector pointing from the b-phase to the

r-phase. The microscopic mass balance at the solid–

liquid interface given by Eq. (3) gives rise to the mac-

roscopic mass balance

_mmb þ _mmr ¼ 0: ð15Þ

In a columnar mushy zone and in the absence of solid

transport, the local solid velocity vr due to dilatation is

very small compared to the interface velocity wbr and is

neglected in this analysis. Therefore, Eq. (3) reduces to

nbr � vb ¼ dnbr � wbr at Abr; ð16Þ

where d is the volume change parameter, defined by:

d ¼ 1� qr

qb

: ð17Þ

Using Eqs. (11), (12) and (15) leads to the averaged mass

conservation equation for the mixture

o

ot
ðebqb þ erqrÞ þ r � ðebqbhvbibÞ ¼ 0: ð18Þ

2.3. Averaged momentum equation

In order to derive the macroscopic momentum

equation for the liquid phase, we consider the superficial

average of the Navier–Stokes equation (2):

o

ot
ðqbvbÞ

� �
þ r � ðqbvbvbÞ
� �

¼ � rPb

� �
þ lbr2vb

� �
þ qbg
� �

: ð19Þ

Using Eq. (10) and the derivatives theorems (A.14) and

(A.15), each term of Eq. (19) can be developed. Let us

start with the left-hand side of Eq. (19):

Averaged accumulation term:

o

ot
ðqbvbÞ

� �
¼ o

ot
ðebqbhvbibÞ

� 1

V

Z
Abr

ðnbr � wbrÞqbvb dA: ð20Þ

Averaged convective term:

r � ðqbvbvbÞ
� �

¼ r � ðebqbhvbvbibÞ

þ 1

V

Z
Abr

ðnbr � vbÞqbvb dA: ð21Þ

Using the Gray decomposition [44]:

vb ¼ hvbib þ evvb; ð22Þ

where evvb is the spatial velocity deviation, allows to write

the term hvbvbib of Eq. (21) under the simplified form

hvbvbib ¼ hvbibhvbib þ hevvbevvbib; ð23Þ

where hevvbevvbib is the liquid momentum dispersion. The

simplified form (23) requires that the different length

scales verify [45]

r0
L

� �2
� lb

L
: ð24Þ

The above condition resulting from Eq. (5) is always

satisfied for homogeneous porous media. This is not the

case for columnar dendritic porous structures presenting

evolving heterogeneities, where scale separation depends

on the decreasing rate of the geometry s. Using sche-

matic dendritic structures Benihaddadene [13] has shown

that (24) is verified only for very small values of s
(s � 0:5%) and that for ‘‘moderate’’ values of s (less

than 4%), Eq. (24) becomes

r0
L

� �2
<

lb
L
: ð25Þ

Under these circumstances, Eq. (23) remains valid and

the left-hand side of Eq. (19) becomes

o

ot
ðqbvbÞ

� �
þ r � ðqbvbvbÞ
� �

¼ o

ot
ðebqbhvbibÞ þ r � ðebqbhvbibhvbibÞ

þ r � ðebqbhevvbevvbibÞ þ
1

V

Z
Abr

nbr � ðvb � wbrÞqbvb dA:

ð26Þ
Let us consider now the right-hand side of Eq. (19):

Averaged pressure term:�
�rPb

�
¼ �rðebhPbibÞ �

1

V

Z
Abr

nbrPb dA: ð27Þ

If we use the Gray decomposition for pressure in the last

term of Eq. (27), the area integral can be written:

1

V

Z
Abr

nbrPbjr dA ¼ 1

V

Z
Abr

nbrhPbibjr dA

þ 1

V

Z
Abr

nbr
ePPbjr dA: ð28Þ

Here, we are confronted to the fact that the first area

integral in the right-hand side of Eq. (28) contains the
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average quantity hPbibjr which is evaluated at r instead

of the centroid x of the averaging volume (Fig. 1). Ac-

cording to Quintard and Whitaker [46], we can over-

come this difficulty using Taylor series expansions of this

quantity about the centroid x of the averaging volume

hPbibjr ¼ hPbibjx þ y � rhPbibjx þ
1

2
yy : rrhPbibjx þ � � �

ð29Þ

where y ¼ r� x. Substitution of expression (29) in (28)

yields

1

V

Z
Abr

nbrhPbibjr dA

¼ 1

V

Z
Abr

nbr dA

 !
hPbibjx þ

1

V

Z
Abr

nbrydA

 !

� rhPbibjx þ
1

2

1

V

Z
Abr

nbryydA

 !
: rrhPbibjx

þ � � � ð30Þ

Using schematic and real dendritic structures, it may be

shown [32,37] that the geometrical moments of Eq. (30)

1

V

Z
Abr

nbrydA;
1

V

Z
Abr

nbryydA; . . . ð31Þ

are very small compared to unity and therefore can be

neglected in the analysis. Furthermore, using the aver-

aging theorem (A.14) with wb ¼ cb leads to

1

V

Z
Abr

nbr dA ¼ �reb ð32Þ

and expression (30) becomes

1

V

Z
Abr

nbrhPbibjr dA ’ �rebhPbibjx ¼ �rebhPbib: ð33Þ

Finally the averaged pressure term takes the form:�
�rPb

�
¼ �ebrhPbib �

1

V

Z
Abr

nbr
ePPb dA: ð34Þ

Averaged viscous term:

If the liquid viscosity is assumed to be constant, the

averaged viscous term is given by

lbr2vb

� �
¼ lbr2 � ðebhvbibÞ

þ lbr � 1

V

Z
Abr

nbrvb dA

 !

þ
lb

V

Z
Abr

nbr � rvb dA: ð35Þ

Using the Gray velocity decomposition (22) in the last

area integral of Eq. (35) provides

lb

V

Z
Abr

nbr � rvbjr dA ¼
lb

V

Z
Abr

nbr � rhvbibjr dA

þ
lb

V

Z
Abr

nbr � revvbjr dA; ð36Þ

where the hvbibjr in the first area integral of Eq. (36) has

to be developed into Taylor series expansions about the

centroid x of the averaging volume. Since geometrical

terms (31) are negligible this integral takes the form

lb

V

Z
Abr

nbr � rhvbibjr dA ’ �lbreb � rhvbibjx: ð37Þ

Therefore, using (36) and (37) in (35) gives rise to

lbr2vb

� �
¼ eblbr2hvbib þ lbreb � rhvbib

þ lbr2ebhvbib þ
lb

V

Z
Abr

nbr � revvb dA

þ lbr � 1

V

Z
Abr

nbrvb dA

" #
: ð38Þ

In the absence of phase change, the last area integral of

(38) vanishes due to the no-slip and no-penetration

conditions (vb ¼ 0) at the solid–liquid interface and the

average of the viscous term (38) takes the classical form

derived in [32].

Since we are dealing with a phase change problem,

according to the mass conservation Eq. (16), the liquid

velocity is a priori not zero at the solid–liquid interface,

due to the volume change (d 6¼ 0) upon solidification. If

we use again Gray’s decomposition in the last area in-

tegral of (38), we obtain

r � 1

V

Z
Abr

nbrvbjr dA
" #

¼ r � 1

V

Z
Abr

nbrhvbibjr dA
" #

þr � 1

V

Z
Abr

nbrevvbjr dA
" # ð39Þ

and as previously, it is easy to show that

r � 1

V

Z
Abr

nbrhvbibjr dA
" #

’ �rebhvbibjx: ð40Þ

Finally, the macroscopic viscous term can be written

under the simplified form:

lbr2vb

� �
¼ eblbr2hvbib þ

lb

V

Z
Abr

nbr � revvb dA

þ lbr � 1

V

Z
Abr

nbrevvb dA

" #
: ð41Þ
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Averaged buoyancy term:

qbg
� �

¼ ebhqbi
b
g ¼ ebqbg: ð42Þ

Finally, the different averaged terms (26), (34), (41) and

(42) provide the following non-closed averaged mo-

mentum equation for the liquid flow through the mushy

zone:

o

ot
ðebqbhvbibÞ þ r � ðebqbhvbibhvbibÞ þ r � ðebqbhevvbevvbibÞ

þ 1

V

Z
Abr

ðnbr � ðvb � wbrÞqbvb dA

¼ �ebrhPbib þ eblbr2hvbib þ ebqbg

þ 1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA

þ lbr � 1

V

Z
Abr

nbrevvb dA

" #
: ð43Þ

In order to develop a closed form of equations (11) and

(43), a closure problem has to be written to express ePPb

and evvb deviations in terms of the intrinsic averaged

pressure and velocity hPbib and hvbib.

3. Closure problem

The derivation of the closure problem is very im-

portant since it allows to include microscopic aspects

such as the tortuosity of the microstructure or micro-

scopic inertia effects in the macroscopic model. This can

obviously contribute to significantly improve the geo-

metrical description of the mushy zone in terms of mac-

roscopic properties and therefore increase the quality of

the representation of the physical phenomena in solidi-

fication modelling.

3.1. Continuity equation

Using Gray’s decomposition (22) in Eq. (1) and

subtracting the averaged equation (11) leads to the local

continuity equation:

ebqbr � evvb þ ebevvb � rqb ¼ qb

oeb

ot
þ qbreb � hvbib � _mmb:

ð44Þ

The associated boundary condition is also obtained us-

ing Eq. (22) in (3):

nbr � evvb ¼ dnbr � wbr � nbr � hvbib at Abr: ð45Þ

According to the mass balance equation (16), the liquid

velocity at the solid–liquid interface Abr is non-zero

during phase change if the density of the two phases are

different (d 6¼ 0). Indeed, in solidification processes, the

interdendritic liquid velocity results from double-diffu-

sive natural convection but also from shrinkage (d < 0)

or expansion (d > 0). This latter phenomena can con-

tribute to morphological instability [47] and macroseg-

regation [48]. Volume change can also play a key role on

the formation of gas micropores due to strong pressure

gradients [1,49,50] and may have a significant influence

on the velocity field at high solidification rates [3] or in

microgravity systems [51].

However, volume expansion or contraction generally

hardly influences the interdendritic flow when the vol-

ume-change parameter d is small, which is the case for

most metal alloys where jdj6 10%. Furthermore, if

we consider that, in most solidification processes, the

growth velocity nbr � wbr is small compared to the aver-

aged liquid velocity hvbib induced by natural convection

we can estimate from Eq. (45) that

jdnbr � wbrj � jnbr � hvbibj: ð46Þ

Therefore, the boundary condition (45) reduces to

nbr � evvb ¼ �nbr � hvbib at Abr: ð47Þ

Moreover, the no-slip boundary condition is given by

~PPðvbÞ ¼ ~PPðvrÞ at Abr; ð48Þ

where ~PPð�Þ is a projection operator on the tangent plane

to the interface. Since vr ¼ 0, the above condition takes

the form:

~PPðevvbÞ ¼ �~PPðhvbibÞ at Abr: ð49Þ

Therefore, Eqs. (47) and (49) provide

evvb ¼ �hvbib at Abr; ð50Þ

which corresponds to a no-slip and no-penetration

condition (vb ¼ 0) at the solid–liquid interface. As it will

be seen in the following analysis, the boundary condi-

tion (50) will play a key role in the closed form of Eqs.

(11), (43). Indeed, from (50) we deduce that the order of

magnitude of the velocity deviation evvb can be estimated

by:

evvb ¼ OðhvbibÞ: ð51Þ

Under these circumstances, the continuity equation (44)

can be simplified on the basis of the order of magnitude

estimates of the different terms of this equation. The

three terms in (44) involving evvb or hvbib can easily be

evaluated by:

ebqbr � evvb ¼ O ebqb

hvbib

‘b

 !
; ð52Þ

ebevvb � rqb ¼ O ebhvbib
qb

L

� �
; ð53Þ

P. Bousquet-Melou et al. / International Journal of Heat and Mass Transfer 45 (2002) 3651–3665 3657



qbreb � hvbib ¼ O ebqb

hvbib

Le

 !
ð54Þ

and according to the length scale constraint (8), we

conclude:

ebevvb � rqb; qbreb � hvbib � ebqbr � evvb: ð55Þ

Furthermore, if wn represents the averaged interfacial

growth velocity defined by:

wn ¼
1

A

Z
Abr

nbr � wbr dA ð56Þ

the macroscopic mass balance (15), with vr ¼ 0, pro-

vides the following estimation of the melting rate _mmb:

_mmb ¼ � _mmr � qrAvwn ¼ O ebqr

wn

‘b


 �
; ð57Þ

where Av ¼ Abr=V is the specific area estimated by

Carbonell and Whitaker [45]:

Av ¼ O
eb

‘b


 �
: ð58Þ

Regarding the term involving the time derivative of eb in

Eqs. (44), (14) gives rise to:

oeb

ot
¼ 1

V

Z
Abr

nbr � wbr dA ¼ �Avwn ¼ O eb
wn

‘b


 �
: ð59Þ

Let us recall that we have assumed that the growth

velocity nbr � wbr is generally small compared to the

average velocity hvbib induced by natural convection.

Therefore we have

jwnj � khvbibk ð60Þ

and Eqs. (52), (57), (59) and (60) give rise to the com-

parison:

qb

oeb

ot
; _mmb � ebqbr � evvb: ð61Þ

Finally, Eq. (44) reduces to the simple form:

r � evvb ¼ 0: ð62Þ

3.2. Momentum equation

In order to derive the local momentum closure

equation we introduce Gray’s decomposition for the

velocity and the pressure in (2) and we subtract the av-

eraged momentum equation (43). After straightforward

manipulations, the closure problem, including the sim-

plified boundary condition (50), takes the form:

ebqb

oevvb

ot
þ ebqbvb � revvb þ ebqbevvb � rhvbib

�r � ðebqbhevvbevvbibÞ � _mmbhvbib

� 1

V

Z
Abr

nbr � ðvb � wbrÞqbvb dA

¼ �ebrePPb þ eblbr2evvb

� 1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA

� lbr � 1

V

Z
Abr

nbrevvb dA

" #
; ð63Þ

evvb ¼ �hvbib at Abr: ð64Þ

Eq. (63) is extremely complex, but as previously done for

the continuity equation, it can be simplified by esti-

mating the order of magnitude of its different terms. On

the basis of the constraints (8), (51) and (60) let us ex-

amine each term of Eq. (63).

According to Quintard and Whitaker [52], if ett and t�

represent the characteristic time variations of evvb and

hvbib, respectively, we can assume time scales separation:

ett � t� ð65Þ

that leads to neglect oevvb=ot when solving the coupled

equations (43) and (63) . The convective and dispersive

terms are easily estimated by:

ebqbvb � revvb ¼ O ebqb

ðhvbibÞ2

‘b

 !
; ð66Þ

ebqbevvb � rhvbib ¼ O ebqb

ðhvbibÞ2

Lv

 !
; ð67Þ

r � ðebqbhevvbevvbib ¼ O ebqb

ðhvbibÞ2

L

 !
; ð68Þ

where L associated to macroscopic spatial variations, is

assumed to be such that L � Lv. Using the length-scale

constraint given by Eq. (8) leads to

r � ðebqbhevvbevvbib � ebqbevvb � rhvbib � ebqbvb � revvb:

ð69Þ

The two other terms in the left-hand side of Eq. (63)

represent the momentum transfer due to phase change.

Since the liquid velocity at the solid–liquid interface

induced by volume change has been neglected (we recall

that boundary condition (64) has been derived on the

basis of this assumption), the interfacial momentum

transfer (area integral) is therefore also negligible

1

V

Z
Abr

qbnbr � ðvb � wbrÞvb dA ’ 0: ð70Þ
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Using the estimation of the solidification rate given by

Eq. (57), the second phase change term _mmbhvbib in (63) is

estimated by:

_mmbhvbib ¼ O qr

wnebhvbib

‘b

 !
ð71Þ

and according to (60) and (66), we have:

_mmbhvbib � ebqbvb � revvb: ð72Þ

Finally, ebqbvb � revvb is the only significant term re-

maining on the left-hand side of (63).

Regarding the right-hand side of Eq. (63), the first

three terms have already been estimated by [38] and

details can be found in this reference. All these terms

have the same order of magnitude, for example the in-

terfacial momentum exchange is such that:

1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA ¼ O eblb

hvbib

‘2b

 !
; ð73Þ

where it is assumed that the contribution of the pressureePPb in the integral is not greater than the contribution of

the velocity term and where Eq. (73) takes into account

the boundary condition (51) at Abr. This latter condition

at the Abr interface allows to write the last term of Eq.

(63) under the form

lbr � 1

V

Z
Abr

nbrevvbjr dA
" #

¼ lbr � 1

V

Z
Abr

nbrhvbibjr dA
" #

ð74Þ

and using Eq. (40) leads to

lbr � 1

V

Z
Abr

nbrevvbjr dA
" #

¼ lbr � ½rebhvbib�: ð75Þ

Finally, (75) can be estimated by:

lbr � 1

V

Z
Abr

nbrevvbjr dA
" #

¼ lbreb � rhvbib þ lbr2ebhvbib ð76Þ

¼ O eblb

hvbib

LvLe

 !
;O eblb

hvbib

L2
e

 !
; ð77Þ

where the porosity gradients are explicitly present. At

this stage, it is important to recall that the length scale

constraint used in the case of mushy zone with moderate

evolving heterogeneities is defined by:

‘b � Le ð78Þ

and therefore, from (73), (77) and (78), we obtain

eblbr2evvb � � 1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA

� lbr � 1

V

Z
Abr

nbrevvb dA

" #
: ð79Þ

Finally, the closure momentum equation (63) reduces to

qbvb � revvb ¼ �rePPb þ lbr2evvb

� 1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA: ð80Þ

3.3. Local closure problem

We summarize the closure problem constituted by

the equations derived in the previous section associated

to the interface condition at Abe:

r � evvb ¼ 0; ð81Þ

qbvb � revvb ¼ �rePPb þ lbr2evvb

� 1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA; ð82Þ

evvb ¼ �hvbib|ffl{zffl}
source

at Abr; ð83Þ

evvb ¼ gðr; tÞ at Abe: ð84Þ

In the above problem, the boundary condition given by

Eq. (84) is not known a priori but according to Eq. (51)

we know that gðr; tÞ is of the order of hvbib and we do

know that this condition will influence the evvb-field only

in a region of thickness ‘b at the boundary of the aver-

aging volume V [53]. That is the reason why, for ho-

mogeneous porous structures, the closure problem is

generally solved in a representative region (unit cell)

with periodicity conditions at the boundary AbeePPbðrþ ‘iÞ ¼ ePPbðrÞ; evvbðrþ ‘iÞ ¼ evvbðrÞ with i ¼ 1; 2; 3

ð85Þ

assuming that variations of hvbib can be neglected within

the unit cell. In Eq. (85), ‘i represents the lattice vectors.
In the case of columnar dendritic porous structures,

macroscopic properties (porosity, permeability, etc.) are

continuously space-dependent (evolving heterogeneities)

and the periodicity condition in the direction parallel to

the primary dendrite arms seems to be inappropriate.

Actually, the type of boundary condition at Abe depends

on the geometry of the dendritic structure and therefore

on its decreasing rate s. Indeed, [32,37] have shown that

for small or moderate values of this parameter, the pe-

riodicity condition could be a relevant approximation,

especially if we do remember that due to the small scale

of influence of (84), such a condition is mathematically
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weak in our problem. Finally, the local closure problem

for a columnar dendritic mushy zone presenting small or

moderate evolving heterogeneities is given by Eqs. (81)–

(83) and (85). Under this form, this problem takes the

same form as the closure problem given by [53] in the

absence of phase change. This important conclu-

sion means that the contribution of ‘‘moderate’’ (but not

negligible) evolving heterogeneities and solid–liquid

phase change in solidifying mushy zone hardly influence

the determination of the effective transport properties of

this region. However, we will see in Section 4, that these

contributions at the macroscopic scale are not neces-

sarily negligible. For the sake of clarity, the main steps

of the treatment of the system (81)–(85) are briefly re-

called in Appendix B and all the details can be found

in [53].

4. Closed form of the momentum equation

Using the macroscopic mass conservation equation

(11) within Eq. (43) according to simplifications (70) and

Eqs. (76), (B.1) and (B.5), we obtain the non-conserva-

tive closed form of the averaged momentum equation:

ebqb
ohvbib

ot
þ ebqbhvbib � rhvbib

þr � ebqbhvbib � hMtMib � hvbib
h i

þ _mmbhvbib

¼ �ebhPbib þ eblbr2hvbib þ lbreb � rhvbib

þ lbr2ebhvbib � e2blbK
�1:hvbib � e2blbK

�1:F:hvbib

þ ebqbg ð86Þ

Some terms of Eq. (86) need to be discussed in the

context of columnar dendritic-like porous structure since

their influence depends on the position within the mushy

zone.

4.1. Inertia terms

It is well known that flows in porous media for small

pore-scale Reynolds numbers are governed by Darcy’s

law which supposes a linear relationship between the

average pressure gradient and the seepage velocity hvbi
[54,55]. The transition between Darcy’s regime where

viscous forces prevail and the inertial regime takes place

for seepage Reynolds numbers between 1 and 10, and

the inertial effects are traditionaly represented by Forch-

heimer’s correction [56]. The problem of the correct

quadratic or cubic form of this term at small Reynolds

numbers is not discussed here [57,58]. The macroscopic

momentum Eq. (86) derived in this study involves three

inertia terms which need to be compared:

ebqbhvbib � rhvbib

macroscopic convective flux;

r � ½ebqbhvbib � hMtMib � hvbib�
momentum dispersive flux;

� e2blbK
�1 � F � hvbib

Forchheimer or microscopic inertial effects:

ð87Þ

Since the columnar dendritic mushy zone is character-

ized by continuous spatial variations of the macroscopic

properties (liquid volume fraction and permeability),

and if the Reynolds number is greater than 1, two re-

gions have to be considered.

First, for small or intermediate porosity values, the

estimation:

evvb ¼ OðhvbibÞ ð88Þ

provides

M ¼ Oð1Þ ð89Þ

and therefore

r � ebqbhvbib � hMtMib � hvbib
h i

� ebqbhvbib � rhvbib ¼ O ebqb

ðhvbibÞ2

L

 !
; ð90Þ

while the estimation of the Forchheimer correction leads

to [53]

lbe
2
bK

�1 � F � hvbib ¼ O
ðhvbibÞ2

‘b

 !
: ð91Þ

Hence, due to the length scale constraint (8) it is clear

that the most important term describing inertial effects is

given by the Forchheimer correction. This phenomenon

is attributed to the microscopic drag forces which are

much more important than the macroscopic inertial

effects [59,60].

The second case concerns the region near the tip of

the dendrites where the porosity tends towards unity and

the notion of dispersion does not make sense any more.

Since the permeability becomes infinite, the Forchheimer

correction does not play any role, and the only re-

maining inertia term is the usual convective term: this

corresponds to the situation described by the classi-

cal Navier–Stokes equation. Therefore, whatever the

porosity in the columnar dendritic mushy zone, the

dispersive flux given by the quantity r � ½ebqbhvbib �
hMtMib � hvbib� is negligible and inertia phenomena is

described by the Forchheimer correction for small and

moderate porosity while they will be represented by the

macroscopic convective term qbhvbib � rhvbib in the vi-

cinity of dendrite tips.
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Finally, since the interfacial momentum transfer due

to phase change (70) can be discarded, the final form of

the macroscopic mass and momentum conservation

equations written in term of superficial velocity (filtra-

tion velocity) take the final form:

o

ot
ðebqb þ erqrÞ þ r � ðqbhvbiÞ ¼ 0; ð92Þ

e�1
b

o

ot
ðqbhvbiÞ þ e�1

b r � e�1
b qbhvbihvbi

� �
¼ �hPbib þ qbgþ lbe

�1
b r2hvbi

� lbe
�1
b reb:rðe�1

b hvbiÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Second Brinkman correction term

� lbK
�1 � hvbi

� lbK
�1 � F � hvbi: ð93Þ

4.2. Brinkman correction terms

Under this form, Eq. (93) includes the second

Brinkman correction term that explicitly involves po-

rosity gradients. Using intrinsic velocity, similar terms

(actually, three Brinkman correction terms instead of

two) have been derived by Whitaker [38] and Quintard

and Whitaker [46] in the absence of phase-change and

for homogeneous structures. They are generally ne-

glected due to the length-scale constraint (5) in such a

geometry.

In the case of columnar dendritic-like porous struc-

tures the spatial porosity variations are generally pro-

gressive and two situations have to be considered. First,

for small decreasing rates of the geometry (quasi-

homogeneous porous structures) where scale separation

is given by Eq. (6), the two Brinkman terms in Eq. (93)

do not contribute to momentum transport except near

the tip of the dendrites where the liquid volume fraction

is close to one and where the first Brinkman term is

essential to account for viscous diffusion phenomena. In

the case of a dendritic mushy zone presenting larger (but

moderate) evolving heterogeneities, scale separation

is represented by the length-scale constraint (7). In this

situation, we have shown (assuming Le � Lv) that the

order of magnitude of the Brinkman terms is not small

compared to the other terms and could have a non-

negligible influence on the momentum, heat and mass

transport within the mushy zone. Numerical simulation

taking into account the porosity gradient are under de-

velopment in order to quantify their actual influence.

Finally, for rapid spatial changes of the porosity at the

mush–fluid region interface, the second Brinkman cor-

rection could be replaced by a jump condition [61].

Obviously, retaining the porosity gradients in the

macroscopic momentum equation would provide a

much more complex closure problem where these terms

would be present as source terms for the deviation fields.

In this case, the closure problem becomes a non-local

problem and its resolution still remains a challenge.

However, for moderate decreasing rates of the geometry,

s, Goyeau et al. [32] have shown that even if the porosity

gradients are present at the macroscopic scale, their

contribution at the local scale can be neglected in the

closure problem leading to an acceptable approximation

of the spatial variation of the permeability.

All this analysis has been performed for laminar flow

regimes and needs to be extended to turbulent flows

where fluctuations evvb involving dispersion phenomena

can be much more important and therefore non negli-

gible [62].

5. Conclusion

A new derivation of the macroscopic momentum

equation for an interdendritic flow through a solidifying

columnar mushy zone has been carried out using an

averaging procedure with local closure problem. In order

to simplify such a complex problem, all the terms arising

from the averaging process (micro- and macro-contri-

butions to momentum transport) have been estimated

and compared on the basis of the characteristic length

scale constraints associated with dendritic-like porous

structures presenting evolving heterogeneities. For den-

dritic structures with ‘‘moderate’’ (but not small)

decreasing rate of the geometry, we have shown that

heterogeneities and phase change hardly influence the

description of effective properties (permeability and in-

ertia tensor) of the dendritic layer. Whatever the po-

rosity within the columnar mushy zone, the macroscopic

dispersive flux has been found to be negligible compared

to other inertial terms of the closed form of the momen-

tum conservation equation. Therefore, inertial phenom-

ena will be described by the Forchheimer correction for

small and moderate porosity while they will be repre-

sented by the macroscopic convective term near the top

of the dendrites where porosity is close to one. Finally,

the closed form of the macroscopic momentum trans-

port equation includes a second Brinkman correction

term explicitly involving porosity gradients. In some

cases depending on the decreasing rate of the geometry,

this additional term could significantly modify the rep-

resentation of the momentum, heat and mass transfer in

the mushy zone.

This work is a first step towards the derivation of a

‘‘complete’’ macroscopic model for the simulation of

multi-component solidification systems and a similar

work concerning the heat and species transfer conser-

vation equations and the determination of effective

transport properties in the mushy zone (diffusion–dis-

persion, mass exchange and conductivity coefficients) is

presently under development. One of the application we

are involved in, concerns the solidification of a molten

pool (corium) that can be found in a nuclear reactor
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vessel during a scenario of an hypothetical severe acci-

dent [63].
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Appendix A. The volume-averaging technique

Here, we briefly recall the main features of the vol-

ume averaging theory and all the details are provided in

[22,23,44,45,64], and many subsequent papers.

Let us consider a physical property w, continuous in
each phase of a b–r system:

w ¼ wb in b-phase;
wr in r-phase:

�
ðA:1Þ

In (A.1), wb and wr are defined such as:

wb ¼ 0 in r-phase;

wr ¼ 0 in b-phase:
ðA:2Þ

The technique consists in averaging w in a representative

elementary volume (REV) or averaging volume V of a

two-phase system (Fig. 1). The following definitions are

used:

V : averaging volume;

Vb : volume of b-phase within V ;

Vr : volume of r-phase within V :

ðA:3Þ

The phase volume fractions are defined as:

eb ¼ Vb

V
; er ¼ Vr

V
ðA:4Þ

and related by

eb þ er ¼ 1: ðA:5Þ

A better definition of these quantities involves the phase

indicator defined as

cb ¼ 1 in b-phase;
0 in r-phase

�
ðA:6Þ

in the case of the b-phase. Using this definition, the b-
phase volume fraction is simply

eb ¼ hcbi: ðA:7Þ

The superficial volume average of wb is defined as:

hwbijx ¼
1

V

Z
Vb

wbðxþ ybÞdVy : ðA:8Þ

The intrinsic phase average of wb is defined as:

hwbi
bjx ¼

1

Vb

Z
Vb

wbðxþ ybÞdVy : ðA:9Þ

The notation dVy is used to indicate that the integration

is done with respect to the variable y (Fig. 1). Note that

both types of averages are calculated at the centroid x of

the averaging volume. However, for convenience, the

point x is usually not specified, and the following no-

tations are adopted:

hwbi ¼ hwbijx; ðA:10Þ

hwbi
b ¼ hwbi

bjx: ðA:11Þ

These two kinds of averages are related by:

hwbi ¼ ebhwbi
b
: ðA:12Þ

According to [44], wb can be decomposed in two parts:

wb ¼ cbhwbi
b þ ewwb; ðA:13Þ

where hwbi
b
and ewwb are the averaged and the deviation

(fluctuation), respectively.

In order to average the microscopic conservation

equations in each phase, one uses the following theorems

[44] which relate the superficial volume average of the

spatial and temporal partial derivatives to the partial

derivatives of the superficial volume average:

hrwbi ¼ rhwbi þ
1

V

Z
Abr

nbrwb dA; ðA:14Þ

owb

ot

� �
¼

ohwbi
ot

� 1

V

Z
Abr

nbr � wbrwb dA; ðA:15Þ

where wbr is the local interface velocity and nbr is the

unit normal vector at the b–r interface, pointed from the

b-phase towards the r-phase (Fig. 1). For the demon-

stration of these theorems, one can refer to [65,22].

Appendix B. Closure problem

Due to the boundary condition (83) where hvbib can

be considered as a source term in the boundary value

problem for ePPb and evvb, the following solutions are

proposed for the deviation fields:

evvb ¼ M � hvbib; ðB:1Þ

ePPb ¼ lbm � hvbib; ðB:2Þ
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where m andM are vector and tensor fields, respectively.

In order to separate linear and inertia effects [53] de-

composed m and M in two parts:

m ¼ bþ c; ðB:3Þ

M ¼ Bþ C ðB:4Þ

and the closed form of the interfacial momentum ex-

change can be written under the generic form

1

V

Z
Abr

nbr � ð�ePPbIþ lbrevvbÞdA

¼ �e2blbK
�1 � hvbib|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Darcy term

� e2blbK
�1 � F � hvbib|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Inertia term

; ðB:5Þ

where K is the permeability tensor that only depends on

the tortuosity of the porous structure and where F is the

Forchheimer correction tensor which accounts for mi-

croscopic inertia effects [53]. These tensors can explicitly

be written under the form:

ebK
�1 ¼ � 1

Vb

Z
Abr

nbr � ð�IbþrBÞdA; ðB:6Þ

e2bK
�1 � F ¼ � 1

Vb

Z
Abr

nbr � ð�IcþrCÞdA; ðB:7Þ

where the vector b and the tensor B are specified by the

two periodic boundary problems [53]:

Problem I:

r � B ¼ 0; ðB:8Þ

0 ¼ �rbþr2B� 1

Vb

Z
Abr

nbr � ð�IbþrBÞdA; ðB:9Þ

B ¼ �I at Abr; ðB:10Þ

bðrþ ‘iÞ ¼ bðrÞ; Bðrþ ‘iÞ ¼ BðrÞ at Abe; ðB:11Þ

hBib ¼ 0: ðB:12Þ

After straightforward manipulations, the system (B.8)–

(B.12) can be written under the more convenient form

[39]:

r �D ¼ 0; ðB:13Þ

�rdþr2D ¼ I; ðB:14Þ

D ¼ 0 at Abr; ðB:15Þ

dðrþ ‘iÞ ¼ dðrÞ; Dðrþ ‘iÞ ¼ DðrÞ at Abe ðB:16Þ

hdib ¼ 0; hDib ¼ �e�1
b K; ðB:17Þ

where D and d are defined by:

D ¼ �e�1
b ðBþ IÞ � K; ðB:18Þ

d ¼ �e�1
b b � K: ðB:19Þ

The solution of the above problem does not raise major

difficulties since the system given by Eqs. (B.13),(B.17)–

(B.19) is similar to the classical Stokes boundary value

problem where d and D would represent the pressure

and the velocity, respectively. The resolution provides

the D-field which is integrated to provide the perme-

ability using the average condition (B.17).

The Forchheimer correction tensor F is calculated by

solving Problem II, which depends both on the geometry

of the porous structure but also on the intensity of the

flow through the porous medium.

Problem II:

r � C ¼ 0; ðB:20Þ
qb

lb

vb � rðBþ CÞ ¼ �rcþr2C

� 1

Vb

Z
Abr

nbr � ð�IcþrCÞdA;

ðB:21Þ

C ¼ 0 at Abr; ðB:22Þ

cðrþ ‘iÞ ¼ cðrÞ; Cðrþ ‘iÞ ¼ CðrÞ at Abe; ðB:23Þ

hCib ¼ 0: ðB:24Þ

At this stage, a full solution of this problem is necessary

to discuss seriously the dependence of F on the Reynolds

number and the geometry. For instance, depending on

the cases, a quadratic or a cubic dependence of the in-

ertial correction to Darcy’s law at small Reynolds

numbers has been found [53,57,58,66]. According to

Whitaker [53], the proposed boundary value problem is

equivalent to the Navier–Stokes equations for steady,

incompressible flow in a spatially periodic system. Nu-

merical calculations are presently under development in

order to study the relevance of the periodic boundary

conditions at Abe in the case of dendritic structures and

to describe accurately the dependence of the Forchhei-

mer correction.
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